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LETTER TO THE EDITOR 

Approximations to the eigenvalues of the Hamiltonian 
+ A IX” I in the Weyl correspondence limit-a critical 

appraisal of Turschner’s formula 

B J B Crowley and T F Hillt 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 8 May 1979 

Abstract. Accurate numerical calculations performed for the linear, quartic and square- 
well potentials ( V ( X )  = AIX”1, Y = 1,4, CO) fail to confirm the recent claim by Turschner to 
have found an exact closed-form formula for the eigenvalues of the Hamiltonian H(P,  X )  = 
P 2 + A / X “ /  for any v > O .  The formula is found to be an approximation (except for Y = 2). 
However, for the lowest eigenvalues of the potentials considered, it is found to be 
significantly more accurate than the simple WKB approximation based upon the Bohr- 
Sommerfeld integral. For I f  In(fv)l’cc 1 we suggest that Turschner’s formula should be a 
valuable means of accurately estimating the lowest (n C 2) eigenvalues of H(P, XI- 
particularly in view of its remarkable simplicity in these cases. For the higher eigenvalues 
( n  L 3), the Bohr-Sommerfeld formula may be used without significant loss of accuracy. An 
examination of Turschner’s theoretical arguments, in the light of these quantitative 
discrepancies, leads us to the following conclusion: the assumption that, in the Weyl 
correspondence, a bijective (i.e. one-to-one onto) canonical transformation in classical 
phase-space possesses an exact unitary representation in Hilbert space is, in general, 
without foundation. This leads us to associate the Weyl-correspondence limit with the 
semi-classical limit and to propose a criterion for a better correspondence principle. The 
technique used by Turschner in deriving his formula is a powerful one and should find wide 
application. However, in the absence of a suitable (‘good’) correspondence principle, the 
results yielded will in general be approximate. 

1. Introduction 

In an article recently published in this journal, Turschner (1979) claims to have derived 
an exact closed-form expression for the eigenvalues of the Hamiltonian H(P, X) = 
P2 +AIX”I for v > 0. However, exact numerical calculations of the low-lying eigen- 
values of the linear (v = 1) and quartic (Y = 4) potentials fail to support this. In fact our 
calculations indicate significant errors of the order of a percent or less. Thus although 
Turschner’s eigenvalue formula (1979 equation 4.14) (hereafter cited as T(4.14)) is 
undoubtedly an approximation for these cases, it is, at least for the low lying eigen- 
values, an extremely good approximation. For the higher energy eigenvalues the 
approximations based upon the WKB (Bohr-Sommerfeld integral) forniula are simpler 
to calculate and may be more reliable. A careful scrutiny of Turschner’s theoretical 
argument has enabled us to identify the logical defect and to show that the result is, in 
fact, an approximation associated with the semi-classical limit. 

t Permanent address: Atomic Energy Board, Pelindaba, Transvaal, South Africa 
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2. Test of Turschner's formula 

Using tables of zeros of the Airy function Ai(x) and its derivative (Abramowitz and 
Stegun 1965 table 10.13) we are able to calculate with high precision the eigenvalues 
E'," (for n s 10) of the linear ('V') potential as given by 

(1) 

for x E R"'. The results for the first three eigenvalues, n = 0 ,1 ,2 ,  are compared with 
values calculated using T(4.14) in table 1. For reference, the WKB results obtained 
using the well-known Bohr-Sommerfeld formula, 

-d2+,/dx2 + ( I x  I -E',")+, = 0 

EA/" 

( n  ++)T = 2 6, (E,, -Xu)'/' d X  

J O  

from which we obtain 

are also given. 
In the case of the quartic oscillator (v = 4) the ground-state energy E? calculated 

usingT(4.14) is in disagreement with the exact result as calculated by Balian et a1 (1978) 
by the order of 3% (table 1). 

More serious discrepancies between the exact theory and that of Turschner (1979) 
arise in the case of the infinite square-well potential 

V'"(X) = 0, 1x1 < 1 

= 00, I X b l  

which corresponds to the limit v + m ,  with a = 1, of T(4.10-4.14). For this case the 
exact eigenvalues E:" of the Schrodinger equation expressed in units of 2m = h = 1 are 
well known to be given by 

E(o5) = 
n [(n + 1)r/212, 

Table 1. Eigenvalues of the Hamiltonian P2+lX'I in units in which h = 2m = 1 compared 
with predictions of WKB and Turschner (1979) approximations. 

El EYKB 
E, calculated using calculated using 

Potential Y n exact T(4.14) equation (2) 

Linear 1 0 1.01879297 1.00697648 1.1 1546024 
1 2.33810741 2.34961178 2.32025079 
2 3.24819758 3.24470198 3.26162552 

Quartic 4 0 1.060 1.032 0.867 

Square well 1 0 2.467 1,234 0.617 
1 9,870 6,169 5.552 
2 22,207 16,038 15.421 
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whereas T(4.14) which in the limit v + co takes the form 

s = 2  
(3) 

yields EL*' = .rr2/8, 5t r2 /8 ,  13.rr2/8,. , . for n = 0, 1, 2, . . . respectively. This is in 
marked disagreement with the exact eigenvalues EL" = .rr2/4, .rr2, 9.rr2/4, . . . . It is 
perhaps significant that, for this potential, the WKB also yields poor results, for low 
values of n, in the form of E!,"WKB - - [ (n  +9.rr/2I2. 

In passing, we note that T(4.14) predicts that the ratio E',"'/€',"' of any two 
eigenvalues of the Hamiltonian P2+IXyI, where v is a rational number, is itself a 
rational number (for finite m, n ) .  This would indeed have been a surprising result were 
it to have been exactly true. 

It is thus established beyond doubt that, in the context of non-relativistic quantum 
theory, Turschner's (1979) theory is, in general, approximate. This should not however 
detract excessively from the value of the formula T(4.14), which offers a simple means 
of calculating the lowest eigenvalues of a wide class of Hamiltonians (for v not too 
large?), in an approximation which offers a significant improvement in accuracy over 
WKB. It would be unfortunate if our criticisms led to a failure to recognize the 
importance of the technique as a powerful tool in obtaining high quality semi-classical 
approximations to a wide range of bound-state eigenvalue problems, 

3. Theoretical discussion 

Evidently the theoretical arguments given in Turschner (1979) contain a flaw. This we 
have been able to identify, but only after carefully eliminating all other possibilities. We 
could find no errors$ of manipulation in the formalism as presented in the paper and, in 
view of our numerical results, this brings into question the underlying assumptions of 
the method. 

The essence of the method is as follows: starting from a quantum-mechanical 
Hamiltonian, H(P, X) ,  the corresponding classical Hamiltonian h ( p ,  x )  is obtained 
using the Weyl correspondence rules (Cahill and Glauber 1969). By means of a 
bijective (one-to-one and onto) canonical transformation in classical phase space, this 
Hamiltonian is mapped onto a new Hamiltonian, &(I p2 +R21) whose constant energy 
surfaces in phase space are circles. Inversion of the correspondence procedure yields, 
from 6, the Hamiltonian R ( N ) ,  where N = t ( X  - iP)(X + iP) = b(X' + P2 - l ) ,  whose 
eigenvalues are just R ( n )  ( n  = 0, 1 , 2 , .  . .). Thus, if the transformation H - . R  is 
unitary, H and have the same spectrum and the eigenvalues of H are given by the 
function g ( n ) .  The validity of the result thus depends only upon the existence of a 
linear unitary transformation connecting H and H. We are therefore able to conclude 
that, in general, such a unitary transformation does not exist. 

The postulate of Turschner, that H and R are related by a unitary transformation, 
depended upon two conjectures, namely: 

t The parameter y = 4 In (fv) = tanh-'[2v/(v + 2 )  - 13 provides a useful guide to the quality of the approxi- 
mation. The formula is exact (all U )  for  y = 0, and becomes progressively poorer as / y /  increases. The 
approximation should be good for /yI*<< 1. 
$ Other than inconsequential typographical errors such as T(2.2) which should read 

D ( a ) = e x p ( a a + - a * a )  
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(i) that the mapping h(p ,  x )  = h(/p2 +f2/) may be achieved by a bijective canonical 
transformation in phase space. 

(ii) that a bijective canonical transformation in classical phase-space of a classical 
function f ( x ,  p )  is equivalent to a unitary transformation of the quantum-mechanical 
operator related to f ( x ,  p )  by the Weyl correspondence. 

In order to test assumption (i) we derived explicit forms of a canonical trans- 
formation which transforms the constant energy surfaces of h(  p ,  x )  = p 2  + / x  ” /  into 
circles in the p, 2 plane. Using plane polar coordinates P, s to span the symplectic 
manifold {p ,  2}, such that 2 + ip = P eie, these are as follows: 

F = ( g 6 u ) ’ / 2 ( p 2 + X Y ) ( u + 2 ) / 4 u  (4a 1 
e = t l r l ( p 2 / ( p 2 + X Y ) ;  t ,  v- l )  (4b) 

for p 5 0, x 3 0, 0 c 8s r / 2 ,  where 

1 
b,, =- dt (1 - = B(1; i, U - ’ )  

21r I’ (1 2 l r ( u + 2 )  

and 

I((; a, b )  = B(5; a,  b)/B(1; a,  6 )  

and B(5; a,  6 )  is the incomplete beta function (Abramowitz and Stegun 1965 0 6.6), 
E 

B((; a, b )  = I t“-’( l -  t ) b - l  dt. 
0 

The complete beta function (Abramowitz and Stegun 1965 0 6.2) is 

~ ( 1 ;  a, b )  = r(a)r(b)/r(a + b) .  

The transformation (4) maps the quadrant p 3 0, x 2 0 onto the quadrant 0 6 $ S  l r / 2 .  
The complete transformation which includes the remaining quadrants follows by using 
the reflection symmetry about the p = 0, x = 0 and p = 0, .f = 0 axes. From (4a) it is 
clear‘that this transformation maps the constant energy surfaces p 2  + I x ” /  onto circles 
( f  = constant) in {a, 2). It is straightforward to show that the Jacobian 

Id(% B)/d(x, p)l= Fla(F, J ) / d ( x ,  P)I 

is everywhere equal to unity, thus demonstrating that the transformation is area 
preserving and therefore canonical. The transformation and its inverse are one-to-one, 
and are defined for all {x, p }  E R”’ and (2, p }  E R”’. It is therefore bijective. Having thus 
demonstrated assumption (i) to be justified for all Hamiltonians h(p ,  x )  of the form 
h ( p ,  x )  = p 2  +lx”l, we deduce that assumption (ii) cannot in general be justified. 

We conclude therefore that the conjecture ‘that a bijective canonical transformation 
in classical phase-space possesses, in the Weyl correspondence, an exact unitary 
representation in quantum-mechanical Hilbert space’, is not in general true. t However 
the quantum-mechanical operators corresponding to bijective canonical trans- 
formations are, as they must be, unitary in the semi-classical limit. This suggests that 
approximating the quantum-mechanical operators by unitary ones is a kind of semi- 
classical approximation (see Appendix), and accounts for the observed correlation 
between the errors arising from use of the WKB approximation ( 2 )  and those arising 
from use of T(4.14). However it is not clear that the ‘Weyl correspondence limit’ is 

t See Appendix. 
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equivalent to the 'semi-classical limit', particularly as the theories appear incompatible 
in so far as the treatment of complex trajectories (e.g. Balian et a1 1978) is concerned. 
We do note however that the result of applying T(4.14) to the ground state of the quartic 
oscillator (table 1) is in good agreement with the zero-order semi-classical calculation of 
Balian et a1 (1978) when the contribution S from complex trajectories is included. 

Finally, we propose that the criterion for a 'good' correspondence principle(shou1d 
it exist) be that all bijective canonical mappings in classical phase-space should possess a 
unitary representation in quantum mechanics. With such a correspondence principle, 
the basic method of Turschner (1979) (as outlined above) would be exact. 

The authors are grateful to Brian Buck for discussions. This work was carried out with 
support from the Science Research Council (UK) and the South African Council for 
Scientific and Industrial Research. 

Appendix 

The defect in Turschner's 'proof' of the unitary equivalence of the Hamiltonians H and 
R is as follows. (Following Turschner, we let &') denote the Hilbert space of 
Hilbert-Schmidt operators acting on &'), &') being the Hilbert space of quantum 
states of the system.) Although it  is shown by Turschner (1979 (4.7 et seq.)) that the 
operator U which relates H and is a unitary operator on &*), it is not shown that U is 
equivalent to a unitary operator on &'). This requires establishing the existence of a 
unitary operator A acting on &') such that I?(= UH)  = AHAt. In general, such an 
operator A cannot be found. 

The Weyl correspondence is defined by the set of operators { T ( a ) }  which, for a 
spanning { p ,  x } ,  comprise a complete orthonormal basis spanning &*'. This provides a 
representation of an operator FE &2) in terms of the corresponding classical function 
f ( a )  in the manner of T ( 2 . 5 ~  and 2.8). The operator U on %'") is defined by the 
relation (T(3.4)) 

U T ( a )  = T ( E )  = T(g(a))Vcu 

where CU = g ( a )  defines a bijective canonical transformation in classicul phase space, 
For the operator U to be equivalent to a unitary transformation on & I )  there must exist 
an operator A acting on 26') such that 

i.e. A must be independent of a. 
The operator T is defined by (T(2.1)) 

T ( a )  = 2D(cY)(-l)"+"D(-a) (6) 

where D ( a )  is the displacement operator (Cahill and Glauber 1969 equation 2.1 1) and 
a is the operator 2-"'(0 + iP). Using the unitary property of D ( a )  (Cahill and Glauber 
1969 equation 2.12) an operator A ( a )  satisfying ( 5 )  above is easily deduced to be 

A ( a )  = D ( g ( a ) W ( a )  

= D(CU)D(-a) 

= D(& - a )  exp[i Im(C*a)] 
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(using Cahill and Glauber 1969 equations 2.12 and 2.19). Note that the unitary 
operator A'(a) = A(&) exp(i@(a)), where Im @(a) = 0, is equivalent to A.  In general it 
is not possible to find an operator A, independent of cy,  that satisfies ( 5 ) .  However, we 
note the following exceptions: 

( i )  g ( a )  = a  + c (constant displacement in phase-space) when A = D(c) ;  
( i i )  g ( a )  = a  exp iq5 (fixed rotation in phase-space) when A = exp(i4a'a); 

(i i i)  g ( a )  = a* when A is the time-reversal operator which is anti-unitary but which 
preserves the spectrum of a time-reversal invariant Hamiltonian. 

(io) In the semi-classical limit, it follows from Cahill and Glauber (1969 equation 
6.35) (with s = 0) that T(cy) is diagonal in the representation defined by the eigenstates 
(E  @)) of the operator a, and that the matrix elements of T(cy) are then &functions in 
a. That is, the matrix elements of T ( a )  are of the form 

(PIT(+) - S ( P  - Y ) W  -a)Tp. 
h+O 

A unitary operator A that is independent of cy is then easily found to be 

A = D(g(P) )D+(P) la ) (P I . r r - '  d2P 

where IP) E {IP)E 2@*'laIP) = PIP)}  which is the complete set of eigenstates of a and 
which provides a representation of the identity operator through 

(Cahill and Glauber 1969 equation 2.27). We have also made use of the following 
properties of D :  

D(P)lO> = IP) and D+(P)IPF = lo> 
(Cahill and Glauber 1969 equations 2.12 and 2.19-20). The existence of a unitary 
operator A (that is independent of a )  in the semi-classical limit explains why the 
method yields good results consistent with the semi-classical approximation. 
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